LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

U.G. DEGREE EXAMINATION - ALLIED

FOURTH SEMESTER - APRIL 2023
UMT 4402 - MATHEMATICS FOR PHYSICS - II
Date: 04-05-2023
Dept. No.
Max. : 100 Marks
Time: 09:00 AM - 12:00 NOON

SECTION A - K1 (CO1)

Answer ALL the Questions

$(10 \times 1=10)$

1. Answer the following
a) What is the Euler's formula to find a_{0} in the Fourier series for the function $f(x)$ in the interval $\alpha<x<\alpha+2 \pi$?
b) What is an ordinary differential equation?
c) What do you mean by a linear differential equation?
d) Define Laplace transform.
e) Define the gradient of a scalar point function f.
2. Fill in the blanks
a) If $n \neq 0$, then $\int_{0}^{2 \pi} \cos n x d x=$ \qquad
b) A solution of a differential equation obtained by giving particular values to the arbitrary constants in the complete solution is called as a
c) The sum of the complementary function and the particular integral of an ordinary differential equation is called
d) $L\left\{e^{3 t}\right\}=$ \qquad .
e) $\operatorname{div} \operatorname{curl} \boldsymbol{F}=$
SECTION A - K2 (CO1)

Answer ALL the Questions
10)
3. Answer the following MCQ
a) Which of the following function f is an odd function?
i. $\quad f(x)=\cos x$
ii. $\quad f(x)=e^{x}$
iii. $\quad f(x)=\sin x$
iv. $f(x)=x^{2}+x$
b) What is the integrating factor of the Leibnitz linear equation $\frac{d y}{d x}+P y=Q$?
i. $e^{P Q}$
ii. $e^{\int P d x}$
iii. $e^{\int Q d x}$
iv. $\int P d x$
c) The complete solution of $\left(D^{2}-1\right) y=0$ is
i. $y=A e^{x}+B e^{x}$
ii. $y=A x e^{x}+B e^{-x}$
iii. $y=A x e^{x}+B e^{x}$
iv. $y=A e^{x}+B e^{-x}$
d) The inverse Laplace transform of $\frac{1}{s^{2}}$ is
i. $2 t$
ii. 1
iii. t
iv. $\sin t$
e) If $\boldsymbol{R}=x \boldsymbol{I}+y \boldsymbol{J}+z \boldsymbol{K}$, then $\nabla \cdot \boldsymbol{R}$ is equal to
i. 3
ii. 0
iii. -3
iv. 4

4. \quad State True or False

a) The Fourier series cannot be obtained for a periodic function.
b) The order of the differential equation $y \frac{d y}{d x}=x\left(\frac{d y}{d x}\right)^{2}+x$ is 1 .
c) $\frac{1}{D} X=\int X d x$.
d) If $L\{f(t)\}=\bar{f}(s)$, then $L\left\{e^{a x} f(t)\right\}=\bar{f}(s+a)$.
e) The divergence of vector valued function is a scalar point function.

SECTION B - K3 (CO2)

	Answer any TWO of the following in $\mathbf{1 0 0}$ words $\mathbf{2 0})$$\quad(\mathbf{2 \times 1 0}=$
5.	Obtain the Fourier series for $f(x)=e^{-x}$ in the interval $0<x<2 \pi$.
6.	Solve $y \sqrt{1-x^{2}} d y+x \sqrt{1-y^{2}} d x=0$.
7.	Solve $\frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}+y=\left(1-e^{x}\right)^{2}$.
8.	Draw the graph of the periodic function $f(t)=\left\{\begin{array}{c}t, \text { when } 0<t<\pi \\ \pi-t, \text { when } \pi<t<2 \pi \\ \text { and find its Laplace transform. }\end{array}\right.$

SECTION C - K4 (CO3)

	Answer any TWO of the following in $\mathbf{1 0 0}$ words $\mathbf{2 0})$
9.	Solve $\left(y^{2} e^{x y^{2}}+4 x^{3}\right) d x+\left(2 x y e^{x y^{2}}-3 y^{2}\right) d y=0$.
10.	By using the method of variation of parameters solve $\frac{d^{2} y}{d x^{2}}+4 y=\tan 2 x$.
11.	Find $L^{-1}\left\{\frac{2 s^{2}-6 s+5}{s^{3}-6 s^{2}+11 s-6}\right\}$.

> SECTION D - K5 (CO4)

Answer any ONE of the following in 250 words
($1 \times 20=$ 20)
13. Prove that $x^{2}=\frac{\pi^{2}}{3}+4 \sum_{n=1}^{\infty}(-1)^{n} \frac{\cos n x}{n^{2}}$, in $-\pi<x<\pi$. Hence show that
a) $\sum \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$.
b) $\sum \frac{1}{(2 n-1)^{2}}=\frac{\pi^{2}}{8}$.
c) $\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\cdots=\frac{\pi^{2}}{12}$.
14. Solve $\frac{d y}{d x}=\frac{y+x-2}{y-x-4}$.

SECTION E - K6 (CO5)

Answer any ONE of the following in $\mathbf{2 5 0}$ words
(1 $\times 20=$
20)
15. By using Laplace transform solve the differential equation $\frac{d^{2} x}{d t^{2}}-2 \frac{d x}{d t}+x=e^{t}$ with $x=2$ and $\frac{d x}{d t}=-1$ at $t=0$.
16. State Gauss divergence theorem and verify the theorem for $\boldsymbol{F}=\left(x^{2}-y z\right) \boldsymbol{I}+\left(y^{2}-z x\right) \boldsymbol{J}+$ $\left(z^{2}-x y\right) \boldsymbol{K}$ taken over the rectangular parallelepiped $0 \leq x \leq a, 0 \leq y \leq b, 0 \leq z \leq c$.
\$\$\$\$\$\$

